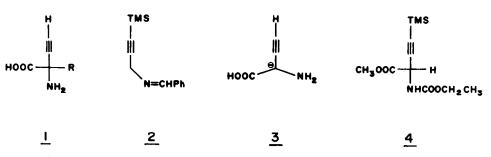
0040-4039/78/0429-1581. **\$**02.00/0.


TRIMETHYLSILYLACETYLENE-N-CARBOETHOXY GLYCINATE DIANION - A GENERAL SYNTHON FOR α -ACETYLENIC α -AMINO ACIDS.

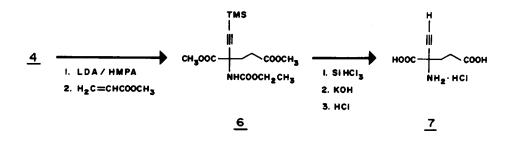
Patrick Casara and Brian W. Metcalf

Centre de Recherche Merrell International 16 rue d'Ankara 67C00 Strasbourg - France

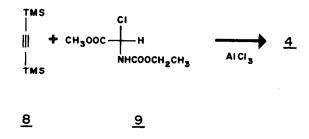
(Received in UK 27 February 1978; accepted for publication 17 March 1978)

Mechanistic considerations suggest the use of α -acetylenic amino acids <u>1</u> as potential enzyme-activated irreversible inhibitors of the corresponding α -amino acid decarboxylases ¹. The recent syntheses of α -acetylenic-3,4-dihydroxyphenyl alanine ^{1,2}, the sole known example of such an amino acid, involve the sequential alkylation and acylation of anions derived from the propargylamine synthon <u>2</u>. In view of the potential utility of this class of novel amino acids, an equivalent of the nucleophile <u>3</u> would be of obvious interest, as it would allow a variety of α -acetylenic α -amino acids to be prepared from a single precursor. An apparent approach would be to directly acylate the anion derived from <u>2</u>. This reaction, however, has been reported to afford an unidentified 2:1 adduct ². We now wish to report that the dianion prepared from the urethane <u>4</u> undergoes regioselective alkylation with a variety of electrophiles, and hence provides general synthetic access to the desired highly-funtionalized amino acids.

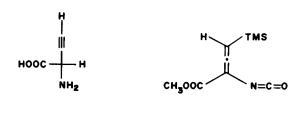
As shown below, the dianion which can be generated from <u>4</u> using excess lithium diisopropylamide/hexamethylphosphoramide (LDA/HMPA) undergoes alkylation with a representative series of alkyl halides. In no case were allenic products observed. The free α -acetylenic α -amino acids can be obtained from the alkylation products <u>5</u> by alkaline hydrolysis (2 M KOH, 12 hours reflux) or, more mildly, by first generating the isocyanate with SiHCl₃⁴, followed by alkaline hydrolysis (1 M KOH, 3 hours at 25°C).


 $4 \xrightarrow{\text{TMS}} \\ H \xrightarrow{\text{H}} \\ 1. \ \text{LDA / HMPA} \\ 2. \ \text{RX} \\ \frac{5}{5} \\ \frac{1}{5} \\ \frac{1}$

	<u>R</u>	<u> </u>	Yield of 5
(a)	PhCH ₂	Br	75 %
(b)	H ₂ C=CHCH ₂	Br	70 %
(c)	сн ₃ (сн ₂) ₃	I	60 %


In a typical experiment <u>4</u> (1 mmol) in THF (5 ml) is added to LDA (3 mmol) in THF (10 ml) containing HMPA (1 ml) at -70°C. After 15 minutes at -70°C benzyl bromide (1 mmol) in THF (2 ml) is added. The mixture is maintained for 3 hours at -70°C, then quenched by the addition of acetic acid (2 mmol). The alkylation product <u>5a</u> (m.p. 97°C)⁵ is obtained in 75 % yield after ion exchange chromatography and recrystallization. α -acetylenic phenylalanine (<u>1</u> R = CH₂Ph m.p. 184°C)⁵ is then obtained by alkaline hydrolysis followed by ion exchange chromatography.

Although the alkylation by alkyl halides of the dianions derived from ethyl hippurate 6 and from N-benzylbenzamide 7 has been reported, in neither case was the conjugate addition to an α , β -unsaturated ester described. The


dianion from <u>4</u>, however, undergoes a regioselective 1,4-addition with methyl acrylate to afford the Michael adduct <u>6</u>⁵, in 65% yield. Removal of the protecting groups then affords α -acetylenic glutamic acid hydrochloride <u>7</u> (m.p. 160°C decomp.) ⁵, as depicted below.

The glycinate derivative $\underline{4}$ (m.p. 49° C) ⁵ is readily prepared in 65% yield by the amidoalkylation of bis-(trimethylsilyl)-acetylene ($\underline{8}$) ⁸ with the 2chloro-N-carboethoxy glycinate ($\underline{9}$), under Friedel-Crafts conditions (AlCl₃ (1 eq.) in dichloromethane for 12 hours at 25°C). The amidoalkylation of acetylenes usually leads to cyclic products which result from internal trapping of the intermediate vinyl cation ¹⁰. This is avoided in this case, probably owing to the rapid departure of the trimethylsilyl group.

Attempts to prepare the parent amino acid of the series, α -acetylenic glycine (<u>10</u>), by deprotection of <u>4</u> have proven abortive. Acid or base treatment results in unidentifiable products, while gentle deprotection of the urethane function using SiHCl₃⁴ leads to the allene isocyanate <u>11</u>, which, although unstable, could be characterised spectroscopically.

<u> ||</u>

REFERENCES

1. B.W.Metcalf and K.Jund, Tetrahedron Lett., 3689 (1977).

10

- 2. D.Taub and A.A.Patchett, Tetrahedron Lett., 2745 (1977).
- 3. B.W.Metcalf and P.Casara, Tetrahedron Lett., 3337 (1975).
- 4. W.H.Pirkle and J.R.Hauske, <u>J.Org.Chem.</u>, <u>42</u>, 2781 (1977).
- 5. N.m.r. and i.r. spectra, as well as elemental analysis are in agreement with the proposed structure.
- 6. A.P. Krapcho and E.A.Dundulis, Tetrahedron Lett., 2205 (1976).
- 7. A.N. Tischler and M.H.Tischler, Tetrahedron Lett., 3 (1978).
- 8. The electrophilic substitution of one trimethylsilyl group of <u>8</u> under Friedel-Crafts conditions has been described using acid chlorides:
 - (a) L.Birkofer, A.Ritter and H.Uhlenbrauch, <u>Chem.Ber</u>., <u>96</u>, 3280 (1963).
 - (b) D.R.M.Walton and F. Waugh, <u>J.Organometal.Chem.</u>, <u>37</u>, 45 (1972).
 - (c) H.Newman, J.Org.Chem., 38, 2254 (1973).
- 9. Z.Bernstein and D.Ben-Ishai, Tetrahedron, 33, 881 (1977)
- 10. H.E.Zaugg, Synthesis, 49 (1970).